36,781 research outputs found

    A Non-Zeeman Interpretation for Polarized Maser Radiation and the Magnetic Field at the Atmospheres of Late-Type Giants

    Get PDF
    The linear polarization that is observed, together with likely changes in the orientation of the magnetic field along the line of sight and hence of the optical axes of the medium, can lead to the circular polarization that is observed in the radiation of the circumstellar SiO masers. A magnetic field greater than only about 30 mG is required, in contrast to 10-100 G that would be implied by the Zeeman interpretation. To assess quantitatively the likely changes in orientation of the magnetic field, calculations are performed with representative field configurations that are created by statistical sampling using a Kolmogorov-like power spectrum.Comment: 7 pages Latex (aaspp4.sty), 3 ps-figures. Accepted for publication in Astrophysical Journal Letter

    Relationships between geographic and inertial coordinates of position

    Get PDF
    Relationships between geographic and inertial coordinates of positio

    Geologic application of thermal-inertia mapping from satellite

    Get PDF
    The author has identified the following significant results. Two night-time thermal images of the Powder River Basin, Wyoming distinctly show a major thermal feature. This feature is substantially coincident with a drainage divide and the southward facing slope appears cooler, suggesting a lower thermal inertia. An initial examination of regional geologic maps provides no clear evidence to suggest what type of geologic feature or structure may be present, although it can be noted that its northeastern end passes directly through Lead, South Dakota where the Homestake Gold Mine is located

    Probing Unquenching Effects in the Gluon Polarisation in Light Mesons

    Full text link
    We introduce an extension to the ladder truncated Bethe-Salpeter equation for mesons and the rainbow truncated quark Dyson-Schwinger equations which includes quark-loop corrections to the gluon propagator. This truncation scheme obeys the axialvector Ward-Takahashi identity relating the quark self-energy and the Bethe-Salpeter kernel. Two different approximations to the Yang-Mills sector are used as input: the first is a sophisticated truncation of the full Yang-Mills Dyson-Schwinger equations, the second is a phenomenologically motivated form. We find that the spectra and decay constants of pseudoscalar and vector mesons are overall described well for either approach. Meson mass results for charge eigenstate vector and pseudoscalar meson masses are compared to lattice data. The effects of unquenching the system are small but not negligible.Comment: 26 pages, 13 figure

    Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.Alā€“Mgā€“Si based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the Alā€“Mgā€“Si diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component Alā€“Mgā€“Siā€“Mnā€“Fe and Alā€“Mgā€“Siā€“Fe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the Alā€“Mgā€“Siā€“Mn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same Ī±-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, Ī²-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the Alā€“Mgā€“Si alloy, the identified Fe-rich intermetallics included the compact Ī±-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped Ī²-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of Ī±-AlFeMnSi intermetallics and suppresses the formation of Ī²-AlFe phase in the Alā€“Mgā€“Si alloys, and thus improves their mechanical properties.EPSRC and JL

    Geologic applications of thermal-inertia mapping from satellite

    Get PDF
    In the Powder River Basin, Wyo., narrow geologic units having thermal inertias which contrast with their surroundings can be discriminated in optimal images. A few subtle thermal inertia anomalies coincide with areas of helium leakage believed to be associated with deep oil and gas concentrations. The most important results involved delineation of tectonic framework elements some of which were not previously recognized. Thermal and thermal inertia images also permit mapping of geomorphic textural domains. A thermal lineament appears to reveal a basement discontinuity which involves the Homestake Mine in the Black Hill, a zone of Tertiary igneous activity and facies control in oil producing horizons. Applications of these data to the Cabeza Prieta, Ariz., area illustrate their potential for igneous rock type discrimination. Extension to Yellowstone National Park resulted in the detection of additional structural information but surface hydrothermal features could not be distinguished with any confidence. A thermal inertia mapping algorithm, a fast and accurate image registration technique, and an efficient topographic slope and elevation correction method were developed

    Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.Alā€“Mgā€“Si based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the Alā€“Mgā€“Si diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component Alā€“Mgā€“Siā€“Mnā€“Fe and Alā€“Mgā€“Siā€“Fe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the Alā€“Mgā€“Siā€“Mn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same Ī±-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, Ī²-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the Alā€“Mgā€“Si alloy, the identified Fe-rich intermetallics included the compact Ī±-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped Ī²-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of Ī±-AlFeMnSi intermetallics and suppresses the formation of Ī²-AlFe phase in the Alā€“Mgā€“Si alloys, and thus improves their mechanical properties.EPSRC and JL
    • ā€¦
    corecore